高鋼級油氣管道環(huán)焊縫斷裂問題研究
來源:《管道保護》雜志 作者:宋明;王漢奎;李翼;徐彤;王海濤;吉建立;何仁洋 時間:2020-7-21 閱讀:
宋明 王漢奎 李翼 徐彤 王海濤 吉建立 何仁洋
中國特種設備檢測研究院
摘 要:X80、 X70高鋼級油氣管道的環(huán)焊縫斷裂是大輸量油氣管道安全運行所面臨的主要問題之一。國內(nèi)外高鋼級管道的環(huán)焊縫都呈現(xiàn)出脆性斷裂特征。對比分析了導致環(huán)焊縫脆斷的主要原因,重點介紹了環(huán)焊縫韌性和強度兩個因素影響焊縫斷裂的相關(guān)研究,提出了下一步研究方向,形成了對新建高鋼級管道環(huán)焊縫質(zhì)量控制的工作建議。
關(guān)鍵詞:油氣管道;高鋼級管線鋼;環(huán)焊縫;斷裂;韌性;強度
油氣輸送管道是國家能源輸送的大動脈,其平穩(wěn)高效運行關(guān)系到國家能源安全和公共安全。中緬天然氣管道貴州省黔西南州晴隆縣管段于2017年7月2日和2018年6月10日兩次發(fā)生燃燒爆炸事故,造成重大人員傷亡。同一條管道、在同一區(qū)域、不足一年時間里發(fā)生兩次環(huán)焊縫斷裂泄漏燃爆事故,引起行業(yè)對高鋼級管道環(huán)焊縫質(zhì)量安全問題的擔憂,對高鋼級管道建設產(chǎn)生了負面影響。 2018年10月,國家市場監(jiān)管總局成立了X80鋼級天然氣管道焊接及檢測研究工作組(市監(jiān)特設函〔2018〕 1237號)。研究工作組專家組下設焊接組、檢測組、綜合組三個專項研究小組,在工作組框架內(nèi)開展了大量的研究工作。筆者對比分析了導致環(huán)焊縫斷裂的主要原因,重點介紹環(huán)焊縫韌性和強度兩個因素對焊縫斷裂影響的相關(guān)研究。
1 高鋼級管道環(huán)焊縫的斷裂特征
1.1 國外高鋼級管道環(huán)焊縫的斷裂特征
針對油氣管道環(huán)焊縫的脆斷問題,美國交通運輸部管道和危險物品安全管理局(PHMSA)在2011年曾發(fā)布警示公告,指出在直徑大于508毫米(20英寸)的X70和X80管道返修口中出現(xiàn)了貫穿焊縫金屬的脆斷失效問題(圖 1)[1]。報告認為這種脆斷失效模式是氫致開裂(HAC),主要原因是使用了EXX10纖維素焊條,引入了大量的氫,次要原因是局部幾何拘束和返修口的高拘束等。
2011年,在美國州際天然氣協(xié)會(INGAA)組織的研討會上, PHMSA報告了關(guān)于彎管焊接中采用藥芯焊絲環(huán)焊縫脆斷問題,也認為是HAC和錯邊量過大引起應力集中所致。英國焊接學會(TWI)[2]公布的對X65管道環(huán)焊縫的研究報告也認為,沿焊縫的脆性開裂屬于HAC裂紋,其原因包括焊縫金屬較高的碳當量(局部維氏硬度450 HV)、根焊位置鉬元素的偏析、焊縫成型較差等。
國外高鋼級管道環(huán)焊縫的脆斷多為不等壁厚焊口,從焊趾起裂、在焊縫區(qū)從內(nèi)壁向外壁擴展,且存在應力集中問題(不等壁厚、錯邊等);研究認為其主要原因是管道環(huán)焊縫在焊接過程中引入了過量的氫,從而導致了環(huán)焊縫氫脆斷裂。
1.2 國內(nèi)高鋼級管道環(huán)焊縫的斷裂特征
1.2.1 脆斷宏觀特征
根據(jù)事故調(diào)查,現(xiàn)場環(huán)焊縫脆斷時的環(huán)境溫度都在5 ℃~10 ℃以上;焊接工藝為手工焊打底+自保護藥芯焊絲半自動焊填充/蓋面;脆斷多發(fā)生在直管與彎管連接的不等壁厚焊口位置;斷口及管體宏觀上無塑性變形;起裂位置沿環(huán)向的分布沒有明顯規(guī)律性;裂紋多起裂于內(nèi)壁焊趾;裂紋在焊縫金屬內(nèi)部從內(nèi)壁向外壁擴展,除最終斷裂區(qū)外,起裂和擴展區(qū)均不進入熱影響區(qū)和母材。圖 2 為環(huán)焊縫脆斷的宏觀特征。
1.2.2 脆斷微觀特征
裂紋起裂區(qū)域(打底焊)呈現(xiàn)局部塑性起裂;沿焊縫金屬的裂紋擴展均為脆性擴展,截面金相可見脆性二次裂紋(圖 3);內(nèi)外壁及斷口均未發(fā)現(xiàn)明顯的腐蝕痕跡。
1.3 高鋼級管道環(huán)焊縫斷裂共性特征
環(huán)焊縫脆斷多在不等壁厚焊口、從焊趾起裂、在焊縫區(qū)從內(nèi)壁向外壁擴展、且存在應力集中(不等壁厚、錯邊等),是國內(nèi)外高鋼級管道環(huán)焊縫斷裂的共同特征。國外案例主要是環(huán)焊縫氫致脆斷,原因是使用的纖維素焊條所致。而我國自西氣東輸管道工程以來所使用的多為低氫焊條的多層多道焊,且在后一焊道對前一焊道的回火作用下,即便焊縫金屬未回火區(qū)存在局部氫脆,焊縫整體氫脆的可能性不大。
2 高鋼級管道環(huán)焊縫斷裂的影響因素
比較分析國內(nèi)近年來發(fā)生的X70、 X80等高鋼級天然氣管道環(huán)焊縫失效案例[3-6],梳理了環(huán)焊縫脆性開裂失效原因和影響因素[7],主要包括:①焊縫沖擊韌性值離散、存在低韌性區(qū)域;②變壁厚連接不圓滑過渡造成的局部應力集中;③焊接和返修過程中產(chǎn)生的危害性面型缺陷;④焊縫實際為低強匹配;⑤組合載荷條件。其中,與焊縫性能相關(guān)的是韌性和強度兩個因素。
2.1 環(huán)焊縫韌性
采用自保護藥芯焊絲的環(huán)焊縫主要表現(xiàn)為焊縫金屬沖擊韌性離散,有的位置沖擊吸收能量低。例如,X80管道環(huán)焊縫的打底焊多采用堿性焊條E7016手工焊工藝,填充/蓋面焊采用自保護藥芯焊絲E81T8-Ni2半自動焊工藝,其焊縫金屬﹣10 ℃沖擊吸收能量為15 J~150 J,韌脆轉(zhuǎn)變溫度較高(圖 4)。
焊縫韌性低與其焊接工藝和微觀組織相關(guān)。一方面,我國目前在役干線管道大多選用藥芯焊絲自保護焊(FCAW-S)工藝,藥芯中含有較高的Al元素,在發(fā)揮脫氧保護作用的同時難免使過量的Al固溶在焊縫金屬內(nèi)。例如,自保護藥芯焊縫中的Al含量是氣保護藥芯焊(FCAW-G)焊縫的15倍(圖 5)。 Al能夠促進C的擴散從而穩(wěn)定化奧氏體,進而在降溫過程中進入貝氏體轉(zhuǎn)變區(qū),使得焊縫微觀組織包含較多貝氏體。對比自保護藥芯焊接和氣保護藥芯焊接的環(huán)焊縫顯微組織可以發(fā)現(xiàn)(圖 6), Al含量高的焊縫,其貝氏體鐵素體的含量也較高。
另一方面,焊接時如果單道熔敷金屬較厚,則后 一焊道不能對前一焊道充分回火,會有一定比例的未回火貝氏體鐵素體存在于焊縫金屬內(nèi)。例如,焊縫金屬刻槽錘斷試驗斷口未見明顯焊接缺陷,但可見部分樣品存在不同程度的脆性區(qū)(圖 7),在該區(qū)域中可見粗大的貝氏體鐵素體,貝氏體板條間可見鏈狀M-A組元,這類組織具有較好的強度,但韌性偏低,是環(huán)焊縫脆斷的冶金因素。
2.2 環(huán)焊縫強度
2.2.1 焊接接頭硬度測試
測試材料來自于已運營10年的天然氣管道(下同),管材為X70,壁厚17.5 mm,環(huán)焊縫為手工電弧焊(SMAW)打底,自保護藥芯焊(FACW)填充,具有一定的代表性。取環(huán)焊縫截面打磨并測量其維氏硬度為HV10,每個硬度測點間距1 mm,硬度測試結(jié)果如圖 8所示。焊縫硬度最大值為224 HV10,位于熱影響區(qū)內(nèi)的粗晶區(qū);最小值為164 HV10,位于焊縫填充金屬內(nèi)。焊縫金屬的硬度分布在170 HV10~190 HV10,母材硬度分布在200 HV10~220 HV10,焊縫金屬硬度低于母材硬度。
2.2.2 焊接接頭拉伸測試
焊接接頭普通試樣拉伸試驗顯示斷裂均發(fā)生在焊縫區(qū)位置,結(jié)果見表 1。結(jié)果表明,焊接接頭抗拉強度的最小值為601 MPa,滿足標準中對焊接接頭抗拉強度的要求(不低于同級別母材抗拉強度的下限值570 MPa)。焊縫金屬屈服強度遠低于母材的屈服強度,焊縫金屬抗拉強度低于焊接接頭的抗拉強度。焊接接頭兩側(cè)母材對焊縫金屬存在一定的拘束,使得焊接接頭整體表現(xiàn)出的抗拉強度大于焊縫金屬的抗拉強度。
焊縫金屬的屈服強度低于母材的屈服強度,當管線承受軸向載荷的作用時,焊縫金屬將率先屈服并開始塑性變形,由于焊縫占管線的長度小且焊縫屈服強度低,管線的主要應變集中在焊縫內(nèi),在焊縫處發(fā)生應變集中。應變集中不同于應力集中,應力集中所產(chǎn)生的應力值上限為該處材料的屈服強度,其破壞形式主要表現(xiàn)為疲勞源;應變集中處應變值不受材料限制,其破壞形式主要表現(xiàn)為塑性剪切破壞或者脆性斷裂。
2.2.3 焊縫微區(qū)小試樣拉伸測試
為進一步研究焊縫金屬內(nèi)不同區(qū)域的性能差別,進行了焊縫微區(qū)小試樣拉伸測試。小試樣厚度為0.75 mm、總長度50 mm,取樣位置和拉伸后宏觀照片見圖 9,測試結(jié)果見圖 10。
結(jié)果表明:在環(huán)焊縫內(nèi)部,不同位置的屈服強度、抗拉強度不同,其分布規(guī)律與硬度存在明顯相關(guān)性,低硬度區(qū)的屈服強度與抗拉強度均低于其他區(qū)域,低硬度區(qū)可能是由于后一焊道對前一焊道的回火所致。所有小試樣拉伸的屈服強度均低于標準中對焊接接頭的屈服強度要求,焊接接頭屬于低強匹配接頭。
2.2.4 焊接接頭應變DIC測試
為探究低強匹配焊接接頭在拉伸作用下的變形特征,利用數(shù)字圖像(DIC)相關(guān)技術(shù)測量焊接接頭應變場。 DIC測量系統(tǒng)的硬件部分主要有光源、數(shù)字相機、控制盒和計算機;軟件部分有圖像采集軟件和圖像處理軟件;可實現(xiàn)單目(用一臺數(shù)字相機)測量、雙目(兩臺數(shù)字相機)測量或多目(多臺數(shù)字相機)測量,雙目測量可以給出三維應變場。 DIC是一種非接觸式測量技術(shù),其應變測量精度受光學系統(tǒng)、相機成像元件以及解算算法等多種因素限制,通常其測量精度約為100個微應變。
取焊接接頭板狀拉伸試樣進行測試,焊縫位于試樣中部,試樣內(nèi)外表面保持焊縫原有狀態(tài),試樣側(cè)面精磨并噴漆,以制造表面特征便于計算機處理(圖 11)。試驗過程用雙目相機對試樣側(cè)面成像并計算應變,結(jié)果見圖 12(a)。可見,低強匹配焊縫接頭拉伸時應變分布不均勻,在焊縫內(nèi)部高應變區(qū)呈X形分布, X形的四個點為內(nèi)外壁焊趾,高應變區(qū)與主應力方向近似成45度,此分布特征也可以利用有限元計算得出(圖 12(b))。 X形的變形集中帶表明管線的變形將主要集中在焊縫區(qū)內(nèi)。低強匹配的焊縫將影響高鋼級管道的抗變形能力。
3 研究結(jié)論及研究方向
國內(nèi)外高鋼級管道環(huán)焊縫脆性斷裂具有共性特征。研究結(jié)果表明,影響斷裂的主要原因是焊縫金屬韌性偏低和低強匹配。但目前對脆斷問題的認識仍然過于籠統(tǒng),需要更深入地開展研究工作。一是基于大量試驗數(shù)據(jù)全面對比分析半自動藥芯自保護焊接工藝與全自動實芯焊絲焊接工藝環(huán)焊縫的組織和性能,研究焊縫韌性、拘束度和載荷與脆斷行為的定量關(guān)系;二是采用DIC、微試樣等技術(shù)手段,可以更詳盡地描述焊縫局部的力學性能,反映低強匹配環(huán)焊縫存在的問題,研究低強匹配環(huán)焊縫的斷裂行為。最終,提出新建高鋼級油氣管道環(huán)焊縫質(zhì)量控制的關(guān)鍵要素。
4 高鋼級管道環(huán)焊縫質(zhì)量控制建議
(1)設計方面:應充分考慮油氣管道的失效模式、組合載荷、焊接接頭強度匹配和熱影響區(qū)軟化效應的影響。對于地質(zhì)災害影響區(qū)和高風險管段,在設計時應提出地質(zhì)災害監(jiān)測和管道本體應力應變監(jiān)測設施的安裝要求,并與管道同期建成。
(2)材料方面:制定相統(tǒng)一的高鋼級鋼管和管件專用技術(shù)條件,滿足工程質(zhì)量控制要求;嚴格按照法規(guī)標準、安全技術(shù)規(guī)范要求對壓力管道元件和相關(guān)材料進行驗收,嚴格把控驗收流程,規(guī)范驗收管理。
(3)施工方面:現(xiàn)場焊接優(yōu)先采用參數(shù)可控的自動焊工藝,嚴格評估焊接返修的合理合規(guī)性;安裝單位應現(xiàn)場驗證焊接工藝,評價其執(zhí)行焊接工藝的能力,對每個焊接機組現(xiàn)場施焊的前100道焊口隨機抽查不少于兩道進行理化性能檢驗;焊接記錄應實現(xiàn)自動記錄,并保證施焊記錄的不可更改和可追溯性,焊接記錄保存年限應與管道使用年限一致;嚴格落實管道安裝監(jiān)督檢驗制度,擇優(yōu)選擇無關(guān)聯(lián)關(guān)系且有法定 資質(zhì)的監(jiān)督檢驗機構(gòu),依據(jù)法規(guī)標準、安全技術(shù)規(guī)范開展壓力管道安裝監(jiān)督檢驗;應進一步研究X80鋼管道的焊接工藝,改進不等厚焊接接頭的坡口型式,制定不等厚焊接接頭專項工藝規(guī)程;嚴格執(zhí)行監(jiān)理單位的第三方行為準則,強化監(jiān)理人員的資質(zhì)管理和工作控制流程,保證監(jiān)理工作記錄和數(shù)據(jù)的真實有效和可追溯。
參考文獻:
[1] PHMSA. Pipeline Construction: Hydrogen AssistedCracking[R]. Pipeline Technical Report 2011.
[2] TWI. HYDROGEN CRACKING - ITS CAUSES,COSTS AND FUTURE OCCURRENCE [R].MARCH1999. TWI Technical Report 1999.
[3] 貴州省人民政府中石油中緬天然氣管道黔西南州晴隆段“6·10”泄漏燃爆較大事故調(diào)查組. 中石油中緬天然氣管道黔西南州晴隆段“6·10”泄漏燃爆較大事故調(diào)查報告[R]. 貴陽:貴州省應急管理廳, 2018.
[4] 胡美娟,劉迎來,朱麗霞,齊麗華,楊放. 天然氣輸送管道環(huán)焊縫泄漏失效分析[J]. 焊管, 2014,37(02): 56-58.
[5] 任俊杰,馬衛(wèi)鋒,惠文穎,羅金恒,王珂,馬秋榮,霍春勇. 高鋼級管道環(huán)焊縫斷裂行為研究現(xiàn)狀及探討[J]. 石油工程建設, 2019, 45(01): 1-5.
[6] 李麗鋒,秦小建,王沙廳,常大偉. 某管道環(huán)焊縫開裂失效分析[J]. 熱加工工藝, 2019, 48(03): 259-262.
[7] 何仁洋. 應高度重視油氣管道環(huán)焊縫質(zhì)量管控及隱患排查[J]. 管道保護, 2018(5): 4-7.
[8] 宋明,王漢奎,張雪濤,徐彤. 中俄東線油氣管道焊口性能測試報告[R].北京:中國特種設備檢測研究院, 2018.
作者簡介:宋明,男,高級工程師, 2012年畢業(yè)于北京航空航天大學材料加工工程專業(yè),博士,先后作為負責人承擔了國家重點研發(fā)計劃、國家自然基金、國家質(zhì)檢總局科技計劃等國家級和省部級研究項目多項,現(xiàn)主要從事承壓類特種設備的失效問題研究與檢驗測試分析技術(shù)開發(fā)工作。聯(lián)系方式: 18600294300, songm214@foxmail.com。
上篇:
下篇: